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Involvement of NLRP3 Inflammasome in SARS-Cov-2-
Induced Multiorgan Dysfunction in Patients with COVID-
19: A Review of Molecular Mechanisms  
 
Zahra Babazadeh  
 

Nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) 
inflammasome is a critical component of the innate immune system. The 
inflammasome activation is correlated with the COVID-19 severity. 
Furthermore, the underlying conditions are accompanied by hyperactivation of 
NLRP3 inflammasome and poor outcomes. Herein, we presented the 
involvement of NLRP3 inflammasome in the pathogenies of SARS-CoV-2-
induced multiorgan dysfunction and potential therapeutics. Overexpression of 
NLRP3 inflammasome components and subsequently increased levels of 
cytokines following viral infection leads to the cytokine storm and indirectly 
affects the organ functions. Besides, invading host cells via SARS-CoV-2 further 
activates the NLRP3 inflammasome and induces pyroptosis in immune cells, 
resulting in the secretion of higher levels of proinflammatory cytokines into the 
extracellular matrix. These events continued by induction of fibrosis and organ 
dysfunction following infection with SARS-CoV-2 in critically ill patients. This 
condition can be observed in individuals with comorbidities (e.g., diabetes, 
obesity, etc.) due to a primed state of immunity, which can cause severe disease 
or death in this population. Therefore, understanding the mechanisms 
underlying host-SARS-CoV-2 interaction may help to clarify the 
pathophysiology of SARS-CoV-2-induced multiorgan dysfunction and 
introduce potential therapeutic strategies. 
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INTRODUCTION 

The emergence of coronavirus disease (COVID-19) as a 

result of novel severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) infection has taken a heavy 

toll on human lives worldwide (1). This virus mainly 

affects the respiratory systems (bronchioles and alveoli) in 

humans, leading to fever, shortness of breath, dry cough, 

fatigue, pain, diarrhea, and other manifestations, and 

causes severe symptoms and even death in fewer critically 

ill cases (2, 3). CoVs are enveloped, single-stranded, 

positive-sense RNA viruses (4). The viral genome encodes 

structural proteins, including the spike (S), membrane (M), 

phosphorylated nucleocapsid (N), and envelope (E) 

protein (5). In addition, structural proteins, and accessory 

proteins, e.g.,  open reading frame 3b (ORF3b), ORF6, 

ORF7a, and ORF8 play an essential role in the pathogenies 

of disease (6).  

Angiotensin-converting enzyme 2 (ACE2) acts as a 

receptor for SARS-CoV-2, which can invade host cells. The 

ACE2 expression has been detected among several organs 
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(7). Studies have demonstrated that dysregulated innate 

immune responses play a significant role in detecting the 

fate of COVID-19 patients (8). Autopsy findings of children 

and adolescents showed that SARS-CoV-2 could harm 

body organs such as the lungs, brain, kidneys, liver, and 

heart, leading to death due to multiple organ dysfunction 

in critically ill patients (9). Besides, detrimental clinical 

outcomes have been observed in the presence of 

comorbidities, which increases the risk of mortality (10). 

Infected cases with at least one pre-existing disorder, e.g., 

cerebrovascular disease, cardiovascular disease (CVD), 

diabetes, hypertension, or chronic renal diseases, 

commonly show severe manifestations (11). The pathologic 

features of COVID-19 are now well known. However, the 

mechanisms underlying disease severity and development 

remain obscure.  

 In general, a storm of inflammatory mediators, 

particularly tumor necrosis factor-α (TNF-α), interleukin 

(IL)-1β, and IL-6 is implicated in the tissue injury observed 

in severe COVID-19 cases with acute lung injury (ALI) and 

respiratory distress syndrome (ARDS) (12). 

Inflammasomes,  including AIM2, nucleotide-binding 

domain and leucine-rich repeat protein-1 (NLRP1), NLRP3, 

and NLRC4, have an essential role as sensor proteins in the 

innate immune system by detecting infections and cellular 

stresses (13, 14). The inflammasome activation is 

responsible for the secretion of proinflammatory cytokines 

(15). SARS-CoV-2 induces acute inflammatory responses 

mediated by  inflammasomes in patients with underlying 

situations with chronic inflammation, resulting in severe 

responses in this population (16). Among all types of 

inflammasomes, NLRP3 has attracted more attention; it 

plays a critical role in restricting the replication of 

intracellular pathogens (17). Recent investigations have 

demonstrated that SARS-CoV-2 can activate NLRP3 

inflammasome (18).  

Despite vaccination, various treatment options are also 

being explored (19). The immunomodulatory drugs 

including plitidepsin, dexamethasone, and monoclonal 

antibody therapies (e.g., eculizumab and tocilizumab), 

have exhibited promising effects in alleviating the cytokine 

release syndrome (CRS)  caused by cytokine storm, and 

lowering severe consequences in COVID-19 patients (20-

23). Strategies suppressing the inflammasome/pyroptosis-

associated cascades involved in the secretion of effector 

cytokines may be a new approach against COVID-19-

triggered immune perturbations (24). Pyroptosis, in turn, 

raises the levels of pro-inflammatory cytokines and 

worsens the CRS condition  (25). 

In this review, we discussed the NLRP3 inflammasome 

activation in COVID-19 cases and highlighted the role of 

NLRP3 inflammasome in the pathology of multiorgan 

dysfunction. In addition, we attempted to highlight the 

effects of strategies suppressing upstream molecules of the 

NLRP3 signaling pathway in the production of cytokines. 

 

NLRP3 ROLE IN COVID-19 
CRS is a term used to describe the hyper-inflammation 

condition (26). The release of a high amount of cytokines 

leads to severe inflammation and acute damage to multiple 

organs following SARS-CoV-2 infection (27). As a key 

component of innate immunity, inflammasomes are 

multiprotein complexes that aggregate in the cytoplasm in 

response to pathogen-associated molecular patterns 

(PAMPs) or damage-associated molecular patterns 

(DAMPs). As cytosolic sensors, activation of these 

complexes triggers the processing and production of pro-

inflammatory cytokines. In addition, caspase-1 activated in 

inflammasomes induces pyroptosis, also referred to as 

gasdermin-mediated programmed necrotic cell death (14, 

28). Following activation of these sensors, adaptor 

apoptosis-associated speck-like proteins containing a C-

terminal caspase recruitment domain (ASC) are recruited 

to form inflammasome specks in myocytes and 

macrophages. Afterward, the recruitment of inflammatory 

caspase-1 leads to the production of cytokines (29).  

The NLRP3 inflammasome has been under intense 

investigations which have proved its association with 

various inflammatory disorders (30). Two signals 

contribute to the stimulation of the NLRP3 inflammasome 
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activation: the first signal is the nuclear factor kappa B (NF-

κB)-dependent signaling pathways, which is mediated by 

TNF-α, IL-1β, and Toll-like receptor (TLR) agonists; the 

second signal is mediated by multiple stimuli, ATP, 

bacterial pore-forming toxins (PFTs), nigericin, crystalline, 

or viral RNA, in addition to particulate matters (16, 

31).  Pyroptosis, a pro-inflammatory lytic cell death, is 

critical for controlling microbial infections. Several 

pathological stimuli (i.e., cancer, brain stroke, and CVD) 

can induce this type of cell death  (32-34). It is featured by 

rapid loss of plasma membrane integrity and the release of 

pro-inflammatory markers and intracellular contents (35, 

36). Recently, SARS-CoV-2 has been reported to activate 

inflammasomes in immune cells and tissues. The severity 

of disease and poor outcomes are correlated with the 

concentrations of inflammasome-related products, 

including active caspase-1, IL-1β, and IL-18 (37). The 

SARS-CoV ORF3a protein was revealed to induce NLRP3 

inflammasome activity and elevate the secretion of  IL-1β 

(38, 39).  

Infection of rhesus macaques by SARS-CoV-2 was 

reported to increase the activity of caspase-1 and 

upregulate the pro-inflammatory biomarkers, e.g., TNFα, 

IL-1, IL-6, IL-8, C-reactive protein, MX dynamin-like 

GTPase1 (Mx1), and NF-κB in immune cells. The 

upregulation of these factors is accompanied by 

endothelial disruption, macrophage infiltration, platelet 

activation, and thrombosis in histopathologic sections of 

the lungs within two days after inoculation (40). Activation 

and modulation of the inflammasome complex and how 

SARS-CoV-2 infection intersects with this signaling 

pathway are vital fields of investigation (41). Caspase 

activity in COVID-19, especially caspase-1, has shown 

significance in SARS-CoV-2-induced coagulopathies (42, 

43).   

Given the above data from COVID-19 patients and 

especially the elevated concentrations of IL-1β and IL-18, it 

seems highly likely that SARS-CoV-2 activates the NLRP3 

inflammasome. This activation and the subsequent 

pathologic events are likely to induce multiorgan 

dysfunction.  

NLRP3 ROLE IN SARS-COV2-INDUCED 
MULTIORGAN DYSFUNCTIONS  

Multiorgan damage, including the lung, heart, brain, 

liver, kidney, and spleen, has been detected in patients 

infected by SARS-CoV-2 (44). Previous studies have 

provided better knowledge of mechanisms underlying 

COVID-19-associated pathology. Herein, we mainly 

discuss the contribution of NLRP3 inflammasome in the 

pathogenesis of COVID-19 and associated multiorgan 

damages (Figure 1). 

Figure 1. The role of NLRP3 inflammasome in SARS-CoV-2-induced multiorgan 
dysfunction in patients with COVID-19.  
SARS-CoV-2 can activate the NLRP3 inflammasome to produce more 
inflammatory cytokines, including IL-1β and IL-18, and induce pyroptosis in the 
macrophages.  This increases the level of cytokines and leads to induce cytokine 
storm and subsequently, increase the risk of multiorgan dysfunction (Created 
with BioRender.com).  

Pulmonary damage 
ARDS and respiratory failure are significant causes of 

mortality in COVID-19 patients. In particular, pulmonary 

pathologic features such as diffuse alveolar impairments 

and interstitial fibrosis following the infiltration of immune 

cells and the disturbance of the blood–air barrier, were 

recorded in the lung samples of COVID-19 cases (45). Post-

mortem lung tissues from cases who died from COVID-19 

exhibited several lung pathological alterations, including 
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an intermediate and early proliferative phase of 

subsequent alveolar damage, the presence of platelet–fibrin 

thrombi, and inflammatory characteristics (46-48).  

SARS-CoV-2 induces the progression of a highly severe 

fibrotic response and increases the risk of idiopathic 

pulmonary fibrosis in severe cases of COVID-19 (49). To 

date, autopsy findings and animal models have confirmed 

that the abnormal expression of NLRP3 inflammasome has 

a key role in the pathophysiology of ARDS, which can 

predict poor outcomes of ARDS (50, 51). The number of 

NLRP3 and ASC-positive cells was extremely enhanced in 

the autopsy lung samples from COVID-19 patients 

compared to those of control lung samples (52). Notably, 

leukocytes of post-mortem lung tissues were positive for 

inflammasome components, including NLRP3, caspase-1, 

and ASC, in patients who died from COVID-19 (53). 

Furthermore, ASC speck formation and macrophage 

infiltration were observed in the lung autopsy findings of 

cases with COVID-19 (54). In severe patients, NLRP3-

associated inflammatory pathways cause severe clinical 

manifestations, necrosis, the rise of DAMP, and severe 

inflammation of the lungs (55). Moreover, NLRP3 

inflammasome directly contributes to the development of 

lung fibrosis (56). Exogenous IL-1β was reported to 

establish pulmonary damage by inducing inflammatory 

responses, alveolar tissue disturbance, tissue remodeling, 

and fibrosis (57). An elevated level of IL-18 was observed 

in the pathogenies of idiopathic pulmonary fibrosis (58). 

Therefore, targeting NLRP3 inflammasome may reduce the 

severity of inflammatory responses and prevent the 

progress of pulmonary fibrosis in COVID-19 cases.  

 

Cardiovascular damage 
Cardiovascular abnormalities are common among 

COVID-19 cases observed at different stages of the disease. 

Direct infection of cardiac tissue through the ACE2 

receptor increases the risk of cardiac injury, thrombotic 

activity, and stress cardiomyopathy. Also, heart failure is 

associated with CRS induced by viral infection (59). The 

autopsy samples from COVID-19 cases showed several 

pathologic features including the severe deposition of 

fibrin in the capillaries, capillary dilation in the 

myocardium, and micro-hemorrhage (60). Moreover, 

remarkable vascular alterations were detected in autopsy 

samples of SARS-CoV-2-positive cases. SARS-CoV-2 

directly invades endothelial cells in the vascular system 

due to the expression of ACE2 on their surfaces (61). 

Severe phenotypes,  e.g.,  deep vein thrombosis, 

pulmonary arterial thromboembolism, and 

hypercoagulability, were seen in the blood vessels (61). 

Interestingly, patients with underlying CVDs might be 

vulnerable to SARS-CoV-2 infection  (62).  

According to the RNA sequencing of heart tissues, the 

immune-associated genes (i.e., chemokine ligands (CCLs) 

and ILs) and NF-κB-associated genes (i.e., IKBKG and 

NFKBIA) were dysregulated in COVID-19 patients and 

patients suffering from ischemic cardiomyopathy non- or 

ischemic dilated cardiomyopathy (62). The RNA 

sequencing of peripheral blood mononuclear cells (PBMCs) 

from cases with COVID-19 displays similar gene 

expression patterns of immune responses compared to 

those from cases with coronary artery diseases. 

Furthermore, dysregulation of inflammasome-associated 

genes, including NFKBIA and CHUK, was detected in both 

cases (62). Taken together, inhibition of NLRP3 

inflammasome can be suggested as a potential therapeutic 

option for cardiovascular damage observed in COVID-19 

patients.  

 

Nervous system damage 
It is well documented that SARS-CoV-2 induces diverse 

neuropsychological disorders leading to long-term 

consequences (63). More importantly, the autopsy findings 

have revealed that cortical neurons were infected by SARS-

CoV-2 related to minimal immune cell infiltration in the 

CNS tissues (64). Recently, the virus was detected in the 

cerebrospinal fluid (CSF) of severe COVID-19 patients with 

neurological symptoms. Although SARS-CoV-2 presents 

some neurological complications such as hypogeusia, 

headaches, dizziness, impaired consciousness, myalgia, 
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hyposmia, ataxia, seizures, etc. (65-68), the pathogenic 

features of COVID-19-mediated CNS damage are still 

largely unknown.  

Among various mechanisms defined for SARS-CoV-2, 

CRS can cause potentially life-threatening complications 

(69). On the other hand, SARS-CoV-2 may enter different 

cells of the CNS, including neurons, microglia, and 

astrocytes, endothelial cells of the blood–brain–barrier 

(BBB) through CD147 and ACE2 (70, 71). A post-mortem 

analysis of samples confirmed the presence of activated 

microglia and reactive astrogliosis in the cerebellum and 

medulla oblongata, along with the infiltration of immune 

cells (e.g., lymphocytes) into the parenchymal and 

perivascular regions in the brains of cases who died from 

SARS-CoV-2 infection (72).  

Glial cells, notably astrocytes and microglia, are 

recognized as the main host cells of CNS tissue involved in 

COVID-19. Pro-inflammatory cytokines are mainly 

released by microglia and astrocytes, leading to 

neuroinflammation (71). BV-2 microglia induced by SARS-

CoV-2 spike glycoprotein was reported to trigger the 

secretion of inflammatory mediators, e.g., TNFα, IL-1β, IL-

6, and nitric oxide. Notably, NF-κB, NLRP3, and caspase-1 

activity were elevated in the BV-2 microglial cell line after 

stimulation by SARS-CoV-2 spike glycoprotein (73). 

Moreover, spike protein stimulated the synthesis of NF-κB, 

interferon-beta, and TNF-α in human microglia (74). A 

post-mortem report of three COVID-19 cases showed that 

SARS-CoV-2-induced cerebral pathogenicity was 

associated with microglial NLRP3 inflammasome. 

Infiltrated CD68+ macrophages co-localized within the 

brain were positive for NLRP3 (75).  

Generally, activation of caspase-1 mediated by NLRP3 

inflammasome increases the cleavage of IL-18 and IL-1β 

from their pro-forms and leads to pyroptosis. Active 

caspase-1 also induces BBB disturbance and triggers 

neuroinflammatory responses (76, 77). In this regard, 

elevated levels of ILs stimulate the production of other 

pro-inflammatory mediators by neurons, astrocytes, and 

microglia, resulting in neuroinflammation (78-80). It has 

been reported that IL-1β, secreted by activated microglia, 

plays a crucial role in the BBB disruption and subsequently 

increased permeability allowing for inflammatory and 

immune cells to reach the brain parenchyma (81, 82). 

Likewise, IL-18 can activate microglia via the activation of 

caspase-1 and the secretion of inflammatory mediators into 

the CNS (83, 84).  

P2X7 receptors and viroporins of SARS-CoV-2 were 

reported to promote the assembly of inflammasome and 

lead to pyroptosis in CNS glial cells (85, 86). Pyroptosis is 

characterized by the formation of pores mediated by 

gasdermins on the cell membrane following caspase-1 

activation, resulting in the rapid release of pro-

inflammatory mediators into the extracellular space (87). 

These pathological events intensify neuroinflammation-

triggered CNS damage and induce neuropsychological 

symptoms following SARS-CoV-2 infection (88). NLRP3 

inflammasome contributes to COVID-19-associated CNS 

damages, confirming its potential role as a therapeutic 

target. 

 

Hepatic damage 
Hepatic symptoms also were detected in COVID-19 

patients. According to findings of the post-mortem 

evaluations, SARS-CoV-2 infection contributes to inducing 

platelet-fibrin microthrombi, hyperplasia, aberrant hepatic 

enzymes, lobular inflammation, ischemic hepatic necrosis, 

and steatosis (89). Binuclear hepatocytes and massive 

apoptosis were reported in the liver tissues infected by 

SARS-CoV-2 (90). Furthermore, the elevated levels of 

lactate dehydrogenase (LDH) and IL-18 in the liver 

samples and enhanced activity of T lymphocyte caspase-1 

were seen in COVID-19  patients who suffered from liver 

cirrhosis and alcoholic fatty liver disease, suggesting that 

pyroptosis mechanisms may play an essential role in 

severe illness (16, 91).   

While the virus can be detected in the hepatic cells, CRS 

exhibits a significant role in the pathogenies of SARS-CoV-

2-induced liver injuries (92). Increased activity of Kupffer 

cells, resident liver macrophages, was observed in post-
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mortem biopsies of infected cases (93). The attendance of 

these cells within the sinusoidal regions was reported. 

Furthermore, sinusoidal and pericellular fibrosis was 

detected in COVID-19 autopsy specimens (94). In 

inflammatory conditions, Kupffer cells were shown to be 

activated through different mechanisms, and they can 

induce liver damage and fibrosis via dysregulation of the 

NLRP3 inflammasome and overproduction of IL-1β (95, 

96). There is no evidence to show the involvement of 

NLRP3 inflammasome in the pathology of COVID-19-

associated liver damage. So, further investigations are 

required to find the related pathways and potential 

therapies.  

 

Renal damage 
Acute renal failure (ARF) has also been documented in 

individuals hospitalized due to COVID-19 (97). A 

reduction in the density of kidneys was observed in CT 

scans of these patients,  confirming renal inflammation and 

edema (98). SARS-CoV-2 may infect renal cells (i.e., 

proximal straight tubule cells and podocytes) and induce 

renal injury in patients with COVID-19 (99). Recent 

evidence has revealed that inflammation-triggered tissue 

damage is a basic pathological mechanism underlying the 

establishment of sepsis-induced ARF (100). On the other 

hand, AKI may occur in response to CRS due to renal 

inflammation in COVID-19 cases (101). In SARS-CoV-2 

infections, infiltration of pro-inflammatory cells (i.e., 

CD68+ macrophages) into the tubulointerstitium of renal 

tissues was observed (102). The macrophage infiltration 

plays a key role in inducing inflammation, fibrosis, and 

renal injury, which contribute to disease progress (100). 

Additionally, COVID‐19‐associated hemophagocytic 

macrophage activation and microangiopathy can cause 

ARF (103). Hypoperfusion due to CRS partly leads to renal 

injury (104). There was no data to support the involvement 

of NLRP3 inflammasome in the pathogenesis of SARS-

CoV-2-induced ARF. However, the abnormal activation of 

NLRP3 inflammasome is linked to the inflammatory 

disease associated with ARF (105). Therefore, NLRP3 

suppression may be a potential emerging approach for 

managing the ARF in patients with COVID-19.  

 

AVAILABLE STRATEGIES FOR 
SUPPRESSION OF NLRP3 INFLAMMASOME  

Immunomodulatory failure and organ dysfunction are 

major leading causes of death in many patients with 

COVID-19 accompanied by pneumonia, ARDS, or CRS 

(106-108). Immunomodulatory therapies targeting the 

NLRP3 inflammasome formation and activity will be 

required to control SARS-CoV-2-induced inflammation 

and subsequent multiorgan dysfunction during the 

COVID-19 pandemic.  

 

NLRP3 inhibition 
Dexamethasone is widely used for the management of 

COVID-19. The treatment of  SARS-CoV-2 S1 protein-

stimulated human PBMCs with dexamethasone 

diminished the dysregulation of IL-1β,  which can slightly 

modulate the protein levels of NLRP3 (52). MCC950S, a 

selective NLRP3 inflammasome inhibitor, can reverse S-

protein-triggered NLRP3 inflammasome activation and 

suppress the release of IL-1β  in primary human 

monocytes (37). Moreover, colchicine, an available, safe, 

and inexpensive drug with anti-inflammatory effects on 

NLRP3 inflammasome, could not be effective on the 

duration of hospitalization, 28-day mortality, oxygen-

support requirements, or death (109).  

Glyburide, an antidiabetic medicine, was reported to 

reverse the activation of the NLRP3 inflammasome via 

inhibition of K+ efflux and reduce the secretion of IL-1β 

from cells infected by other RNA viruses, such as 

encephalomyocarditis virus and vesicular stomatitis virus 

(110, 111). CRID3 (NLRP3 inhibitor) administration could 

efficiently diminish the expression of caspase-1 NLRP3 and 

reverse the elevated levels of IL-1β in human PBMCs 

exposed to the SARS-CoV-2 S1 protein (52). Also, targeting 

NlRP3 via nanotechnology-based products can be used to 

treat COVID-19 patients (112). For example, 25-

hydroxycholesterol and didodecyldimethylammonium 
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bromide (25-HC@DDAB) nanovesicles were designed to 

inhibit lung diseases, effectively. The 25-HC@DDAB was 

shown to inhibit the CRS in PBMCs isolated from cases 

infected with SARS-CoV-2. Moreover, the treatment with 

25-HC@DDAB could successfully reverse the gene 

expression of the NLRP3 and inhibit the secretion of IL-1β 

from peripheral blood mononuclear cells (PBMCs) isolated 

from severe patients (112). Bay 11-7082, a phenyl vinyl 

sulfone-related substance, has been proposed to exhibit its 

beneficial effects via suppressing the NLRP3 

inflammasome (5). Besides, pretreatment of SARS-CoV-2 S-

exposed human PBMCs with an NF-κB inhibitor, BAY-11-

7082, suppressed the NF-κB p65 phosphorylation and 

prevented the NF-κB p65 translocation to the nucleus in 

the (52). 

Recently, natural products attracted more attention for 

the management of COVID-19. Some of these components 

can prevent the NLRP3 inflammasome activation including 

dihydroquercetin (113), resveratrol (114), quercetin (115), 

isoliquiritigenin (116), icariin (117), oridonin (118). So, 

these active agents can be introduced as a good candidate 

for the regulation of SARS-CoV-2-induced NLRP3 

inflammasome activation.  

On the other hand, a list of antiviral natural 

components without considering their role in the 

suppression of  NLRP3 inflammasome has been 

recommended including resveratrol, baicalin, coumarin, 

naringenin, and epigallocatechin 3-gallate (119). Among 

several effective substances, curcumin, also called 

diferuloylmethane, is a principal curcuminoid of turmeric 

and has been demonstrated to inhibit the NLRP3 

inflammasome observed in COVID-19 patients without 

any adverse effects (120). Therefore, suppression of the 

NLRP3 inflammasome through specific inhibitors or with 

agents with this ability can be used as a potential 

therapeutic approach for the management of COVID-19.   

 

ASC inhibition 
There was no report to show the effects of specific 

inhibitors of ASC in the regulation of inflammation in 

COVID-19 patients. Nevertheless,  metformin, a diabetes 

medicine, could prevent SARS-CoV-2-associated 

pulmonary inflammation via attenuating ASC speck 

formation and immune cell recruitment in SARS-CoV-2-

infected animals (54). More investigations are required to 

prove the effects of ASC inhibitors in the treatment of 

COVID-19. 

 

Caspase inhibition 
VX-765, known as a caspase-1 inhibitor, could not 

effectively reverse the SARS-CoV-2-induced IL-1β 

secretion (121). An elevated level of IL-1β following 

infection with  SARS-CoV-2 was suppressed by the 

treatment with AC -YVAD-CMK, a caspase-1 inhibitor, or 

Z-VAD-FMK, a pan-caspase inhibitor (122). In the same 

way, emricasan (pan-caspase inhibitor) could suppress the 

activity of caspase-1 in CD4+ T lymphocytes isolated from 

COVID-19 patients with moderate to severe illness (123). A 

growing body of evidence has confirmed the effectiveness 

of some caspase inhibitors. However, more investigations 

are needed to prove their potential in the treatment of 

SARS-CoV-2 infection.  

 

IL-1 inhibition 
Blockage of IL-1β through canakinumab, a fully human 

IgG monoclonal antibody,  beneficially affected mechanical 

ventilation requirements in COVID-19 patients with 

pneumonia (124). Similarly, IL-1RA (the IL-1 receptor 

antagonist) suppressed the SARS-CoV-2-induced caspase-1 

activation and pyroptosis. It could reverse the 

overproduction of pro-inflammatory mediators, including 

IL-6 and TNF-α (122). Anakinra is a recombinant IL-1RA, 

which is known to decrease proinflammatory mediators 

(e.g., IL-1α and IL-1β). In the same way, Anakinra 

displayed clinical improvements in COVID-19 patients. A 

high dose of anakinra could suppress hyperinflammation 

and CRS and exhibit effectiveness in reversing respiratory 

dysfunction in patients with COVID-19 (125). Therefore, 

IL-1 inhibitors are a potential therapeutic approach for the 

management of COVID-19 patients.  
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CONCLUSIONS 
In summary, CRS leads to detrimental clinical 

outcomes in some patients infected with SARS-CoV2. 

NLRP3 inflammasome may be a key regulator of the CRS 

and subsequent multiorgan dysfunction. Infection by the 

virus can stimulate the NLRP3 inflammasome activation 

and induce the production of pro-inflammatory cytokines. 

The NLRP3 inflammasome modulation exhibits a 

therapeutic effect against COVID-19. Several agents with 

anti-inflammatory properties can suppress the gene 

expression of the NLRP3 inflammasome components and 

reduce the levels of inflammatory cytokines. In addition, 

they can reduce caspase-1-mediated cell death. On the 

other hand, the inhibition of the NLRP3 inflammasome 

complex formation and activation may help to determine 

the pathogenic mechanisms underlying COVID-19 and 

establish novel promising therapeutic strategies. While 

there are limited observations or clinical trials to confirm 

the beneficial effects of therapeutic candidates, they can be 

examined and applied in clinical practice. 
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