
Review Article 
2022 NRITLD, National Research Institute of Tuberculosis and Lung Disease, Iran  
ISSN: 1735-0344     Tanaffos 2022; 21(3): 263-270 
 
 
Physiopathological Mechanisms Involved in the Progression 
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Idiopathic Pulmonary Fibrosis (IPF) is a lung disease characterized by 
formation of fibroblast foci and honeycomb lesions in the pulmonary 
parenchyma. The physiopathological mechanisms involved in the development 
of fibrosis and architectural disorganization are still imperfectly elucidated. In 
fact, lesion formation is irreversible and no treatment, to date, has been shown 
to be effective (30% of patients die within 5 years of the onset of the disease). 
The long-held concept of chronic inflammation leading to fibrosis is still 
controversial. Indeed, recent data suggest that the physiopathology of this 
disease is the product of fibroblast dysfunction rather than the result of an 
inflammatory imbalance. This concept supports the parallel involvement of 
three main factors:  epithelial damage, angiogenesis and oxidative stress. In this 
review we highlighted the different factors and the ethiopathogenic pathways 
involved in the fibrotic process, in order to increase our understanding of the 
mechanisms involved in this pulmonary pathology. 
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Idiopathic Pulmonary Fibrosis (IPF) 

 IPF is the most common and severe disease of diffuse 
interstitial pneumonia, mainly affecting the lung 
connective tissue (1). The connective tissue surrounding 
the alveoli becomes thick and rigid, altering pulmonary 
distensibility and thus alveolar-capillary diffusion of O2 
and CO2. These disturbances in respiratory mechanics   
and gas exchange inevitably lead to respiratory 
insufficiency (2). 

Nowadays, despite the progress in clinical and basic 
research, the pathogenesis of IPF is still poorly understood 
and available drug treatments have limited efficacy and 
significant side effects (3-5). It is currently admitted that 
chronic inflammation is not the major factor responsible for 
fibrosis, since fibroblastic proliferation causing aberrant 
healing and accumulation of extracellular matrix (ECM) 
proteins such as collagen is also recorded (6,7). 

The natural history of IPF is variable and unpredictable 

from patient to patient. Some patients undergo long 

periods of stability, while others suffer from frequent 

exacerbations (8). IPF mostly affects the aged people, with 

a median survival of 3 to 5 years after disease diagnosis (9). 

IPF is a lung pathology of unknown etiology, although risk 

factors such as smoking and other environmental 

exposures have been described. Genetic transmission is 

also involved (6). However, it is rare and does not exceed 

3% of cases. 

 

Physiopathology of IPF 
IPF is a heterogeneous process where inflammation is 

considered as one of the etiopathogenic pathways (10). The 

fibrotic parenchyma is characterized by the presence of 

multiple fibroblastic foci which result in the destruction of 
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the parenchyma. This disease has multifactorial origin 

involving epithelial damage, vascular abnormalities, 

inflammation, oxidative stress and pulmonary aging (11). 

 

Fibroblasts: cells most involved? 
Definition 

Fibrosis is closely related to the proliferation of 

fibroblasts (Figure 1). These cells excessively secrete ECM 

and collagen during their proliferation, which leads to 

functional impairment and permanent scar formation (12). 

 

 

 

 

 

 

 

 

 

 
Figure 1. Human pulmonary fibroblasts (HLF) observed under optical 
microscope (Magnification x 5). 

 

Role of fibroblasts in the ECM maintenance and production  
Fibroblasts synthesize extracellular matrix components 

including structural proteins. These cells express many 

subtypes of collagen and elastin, allowing tissues to 

acquire different degrees of rigidity and / or flexibility 

(13). Fibroblasts assure also fibronectin and laminin 

expression. These proteins ensure cells and ECM 

association and can interact with some transmembrane 

adhesion protein such as integrin, allowing them to be a 

good candidate as biomarkers for hepatic fibrosis (14,15).   

The fundamental substance of ECM provides a final 

pathway for the flow of nutrients to tissues, an intercellular 

communication pathway, and a pathway for the migration 

of immune cells, fibroblasts and myofibroblasts. It is also 

an essential route for the migration of endothelial cells 

during angiogenesis (16). 

Fibroblasts also produce ECM degradation enzymes 

(such as metalloproteinases or MMPs) and their inhibitors 

(tissue metalloproteinase inhibitors or TIMPs). Therefore, 

they are responsible for the maintenance and degradation 

of ECM and are also believed to be involved in 

inflammation, angiogenesis and cancer progression. These 

cells produce and respond to a wide range of autocrine and 

paracrine signals, such as cytokines and growth factors. 

Thus, targeting of some auxiliary signaling molecules 

could contribute to the discovery of new drugs for 

therapeutic purposes (16). 

 

Etiopathogenic mechanisms of IPF 
Epithelial lesions         

Several environmental and genetic factors have been 

described in the development of IPF. These factors act by 

exerting an increased stress on the endoplasmic reticulum 

of epithelial cells and consequently induce their 

destruction and apoptosis. Thus, we have noticed that the 

number of type I pneumocytes, the major cells of the 

alveolar epithelial surface, is greatly reduced in advanced 

IPF (17). These epithelial abnormalities are accompanied 

by a release of growth / profibrotic factors such as       

TGF-β, TNF-α and PDGF, which participate in the 

proliferation of fibroblasts and their differentiation into 

myofibroblasts (18). 

Fibrosis pathogenesis is ensured, among others, by 

fibroblasts and myofibroblasts accumulation (19). This 

process is insured by mesenchymal cells expansion, 

epithelial-mesenchymal transition (EMT), and fibrocytes 

differentiation (20). 

This accumulation causes the appearance of fibroblast 

foci around alveolar epithelium, while intra-alveolar and 

interstitial myofibroblasts release some apoptotic factors 

inducing impairment in alveolar re-epithelialization 

capacity. Myofibroblasts possess a great profibrotic 

potential and synthesize collagen in excess in the ECM 

leading to pulmonary architecture destruction. Finally, the 

accumulation of fibroblasts and myofibroblasts is favored 

by their excessive proliferation and the decrease in their 

apoptosis (8) (Figure 2). 
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Figure 2. Pulmonary fibrosis.  Oxidative stress can cause increased reactive 
oxygen species inducing alveolar epithelial cells damage. These cells secrete 
growth factors which promote the proliferation of fibroblasts and their 
differentiation into myofibroblasts leading to pulmonary fibrosis. 

 

Metalloproteases (MPP) are collagenases involved 

primarily in the degradation of ECM (21). Fibroblasts and 

myofibroblasts play an essential role in the synthesis, 

deposition and remodeling of ECM. The result is a 

pulmonary architectural disorganization associated with a 

profound modification of the microenvironment and 

cellular interactions (22). Fibroblasts of the fibrotic lung 

intensely express 4 types of MPP inhibitors called TIMPs or 

"Tissue inhibitor of metalloproteinase '' (23), which leads to 

an imbalance between MMPs and TIMPs level, in favor of 

TIMP and explains the decrease in collagen degradation in 

the damaged parenchyma (24, 25). 

 

Inflammation 
Inflammation was usually considered to be one of the 

mechanisms behind pulmonary fibrosis and has been 

shown to play a significant role in the fibrotic process. 

However, not all forms of fibrosis are inflammatory in 

origin. Indeed, IPF can be secondary to exposure to some 

environmental factors in genetically susceptible people. 

Inflammatory reaction in these patients is often 

exaggerated and is characterized by an accumulation of 

leukocytes in the plasma and alveoli, causing impaired gas 

exchange.  

Inflammation in IPF patients  
In humans, fibrotic lungs contain a variety of immune 

cell population involving macrophages, neutrophils, 

eosinophils and lymphocytes. The simultaneous release of 

cytokines and growth factors amplifies this process (26) 

(Figure 3). It is also interesting to note that “type of 

cytokine” can orient towards the predominant cell type 

during the critical stages of the disease such as interleukins 

IL4, IL5 and IL13 produced by LTCD4 or Th2 (27). 

 

 

 

 

 

 

 

 

 

 
Figure 3. Inflammation and fibrosis. The simultaneous release of cytokines and 
growth factors by the immune cells amplifies the fibrotic process by inducing 
pulmonary cells lesions. Collagen release by myofibroblasts is also implicated so 
both of these mechanisms induce an architectural disorganization of the lung. 
 

Involvement of cytokines and growth factors 
TGF β 

Studies of pulmonary and hepatic fibrosis models have 

demonstrated the central role of TGF- β (28). Indeed, in 

some pathologies, particularly fibrosis, the overexpression 

of this cytokine in its active form is particularly associated 

with increased expression of collagen in the same territory 

where the ECM is accumulated. In addition, TGF-β lung 

level is increased in the lungs of patients with pulmonary 

fibrosis, especially in the areas of regeneration and 

remodeling (28). It is currently accepted that TGF-β is one 

of the best known profibrotic mediators that constitutes an 

essential therapeutic target in the treatment of IPF (29) 

(Figure 4). 

Connective tissue growth factor (CTGF) 
CTGF (also called CCN2) is a member of the CCN 

family of growth factors (Ctgf, Cyr61 / cef 10 and Nov) 

which play a modulating role (stimulator or inhibitor) of 

growth in various biological processes (30). 

Several studies have shown that CTGF activity is 

selectively induced by TGF-β (31,32). These two proteins 
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are specially expressed in tissue repair and fibrotic areas. 

CTGF acts as a secondary cytokine compared to TGF-β, but 

is thought to potentiate the profibrotic activity of TGF-β 

(31). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.  Involvement of TGF-β in fibrosis. During the fibrotic process, alveolar 
epithelial cells secrete high amount of TGF-β, which promotes ECM production 
and the differentiation of fibroblasts into myofibroblasts.  

 

Epithelial-mesenchymal transition (EMT) 
According to Thannickal et al. (33), fibroblasts isolated 

from lungs of patients with IPF have heterogeneous 

phenotypes and properties, different from those of normal 

lung fibroblasts. This heterogeneity is explained by the fact 

that fibroblasts are derived from several types of cells, 

particularly following an EMT. 

EMT is one of the cellular processes that lead to the 

accumulation of fibroblasts and myofibroblasts in the 

lungs of patients with IPF from epithelial cells (34). These 

cells lose their initial phenotype and acquire that of 

mesenchymal cells. EMT involving resident epithelial cells 

is thought to occur in response to injury, which protects 

them from cell death and provides an additional source of 

fibroblasts needed to repair damaged tissues (32). This 

mechanism involves several intracellular signaling 

pathways including Smads and integrins. 

EMT also involves several mediators such as EGF 

(Epidermal Growth Factor), HGF (Hepatocyte Growth 

Factor), FGF (Fibroblast Growth Factor), ECM components 

(mainly collagen) as well as TGFβ-1 (35). 

Finally, it should be noted that type II pneumocytes can 

also undergo an EMT towards fibroblasts and 

myofibroblasts, under specific conditions when this 

transition is inhibited for type I pneumocytes. 

 

Oxidative stress 
Recent studies suggest that oxidative stress play an 

important role in the pathogenesis of fibrosis (36). 

Generation of Mitochondrial reactive oxygen species 

(ROS) has been shown to be associated with increased 

cellular oxidative stress in lung (36). This stress can lead 

directly to the damage, activation and / or apoptosis of 

alveolar epithelial cells, by disturbing the intracellular 

redox balance or indirectly, by activating some signaling 

pathways, such as transcription factors and angiotensin 

converting enzyme, considered to mediate oxidative stress 

(37).  We noticed also NADPH oxidase (NOX) generation 

by ROS, including NOX1 (38), NOX2 (39) and NOX4 (40), 

thus contributing to tissue fibrosis. On the other hand, 

previous work detected higher levels of 8-isoprostane, an 

oxidative stress biomarker in the bronchoalveolar lavage 

fluid of patients with IPF than that of control subjects (41). 

Other studies indicate that ECM is also affected by the 

oxidative stress in the lungs of patients affected by IPF. In 

fact, ECM is an essential element in the regulation of cell 

homeostasis and healing, and the degraded products of 

this matrix, released following ROS attack generated by 

oxidative stress, promote fibrogenesis and modulate the 

activity of epithelial, mesenchymal and inflammatory cells. 

Therefore, interactions between oxidative stress and ECM 

may be an important target for new therapies in IPF (42). 
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Angiogenesis and vascular remodeling 
Some research works reported that IPF is associated 

with an increase of angiogenesis, but these results are 

controversial according to recent studies which rather 

report the reduction of angiogenesis in fibrotic lungs (43). 

Indeed, the suppression of angiogenesis in fibroblast foci 

seems to be linked to a local imbalance between angiogenic 

(VEGF or vascular endothelial growth factor) and 

angiostatic (PEDF or Pigment Epithelium-Derived Factor) 

mediators.  

Antoniou et al. (44) showed that the level of angiogenic 

chemokines such as ''Growth-Related Gene-Alpha'', 

''Epithelial Neutrophil-Activating Protein–78'' and 

‘’interleukin-8’’ is significantly increased in the 

bronchoalveolar fluid of patients with IPF compared to 

healthy subjects. In contrast, angiostatic chemokines 

remained at normal levels. These results diminished the 

possibility of tissue repair and promote the proliferation of 

fibroblasts in IPF, at the time when non-fibrotic tissues are 

characterized by abundant neovascularization showing 

abnormal vascular remodeling (45). 

 

Current therapeutic data 
In October 2014, Pirfenidone and Nintedanib were 

officially recognized by the FDA or "US Food and Drug 

Administration". 

Pirfenidone (5-methyl-1-phenyl-2- [1H] pyridone) has 

antioxidant, anti-inflammatory and antifibrotic effects, 

while nintedanib is an intracellular inhibitor of tyrosine 

kinases, including receptors for growth factor fibroblasts 

(FGF), platelet-derived growth factor (PDGF) and vascular 

endothelial growth factor (VEGF) (18). These drugs reduce 

the risk of death of IPF patients (46). However, these two 

drugs are unable to reduce the risk of acute exacerbation as 

well as disease aggravation (4,47). 

Lung transplantation remains the best alternative 

which can significantly improve patients’ quality of life 

and can extend their life expectancy by several years by 

reducing the risk of death by up to 75% (48). 

Research on IPF is therefore, continuing with two 

fundamental objectives: to fully understand the 

mechanisms that lead to pulmonary fibrosis and thus to 

improve treatment (49). 

The beneficial effects of plant extracts in the treatment 

of IPF have been reported by several research teams 

around the world (50,51). These extracts are able to 

modulate various fibrotic markers (such as collagen, 

hydroxyproline, MMPs, ...), inflammatory biomarkers 

(TGF-α, TGF-β, interleukins, …) as well as the activity of 

antioxidant enzymes (Superoxide dismutase, catalase, ...) 

and the attenuation of ROS generation via the activation of 

multiple signaling pathways, in order to ensure the 

inhibition of pulmonary fibrosis. 

Plant extracts application can inhibit pulmonary 

fibrosis by modulating the activity and expression of 

various markers linked to this disease. In particular, many 

plant extracts rich with phenolic compounds have been 

tested by our team research for the treatment of 

experimental pulmonary fibrosis induced by bleomycin in 

wistar rats (52-58). Each plant extract used was able to 

activate several ethiopathogenic pathways to exert its 

curative effect against experimental fibrosis induced by 

bleomycin. These extracts are promising candidates that 

may offer a new therapeutic alternative in the treatment of 

pulmonary fibrosis.   

 

CONCLUSION 
Current treatments prescribed for the treatment of IPF 

are partially effective and can induce varying degrees of 

side effects. The discovery of a therapeutic agent which 

would block several ethiopathogenic pathways, becomes 

the major objective of research teams in this field. Plant 

extracts and bioactive molecule approach can contribute to 

the opening of new therapeutic pathways in the field of 
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pulmonary fibrosis, for which no therapeutic combination 

has proved to be effective today. 
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