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Mycobacterium tuberculosis is the cause of tuberculosis in humans and is 

responsible for more than 2 million deaths per year. Despite the development of 

anti-tuberculosis drugs (Isoniazid, Rifampicin, Ethambutol, pyrazinamide, 

streptomycin, etc.) and the TB vaccine, this disease has claimed the lives of 

many people around the world. Drug resistance in this disease is increasing day 

by day. Conventional methods for discovering and developing drugs are 

usually time-consuming and expensive. Therefore, a better method is needed to 

identify, design, and manufacture TB drugs without drug resistance. 

Bioinformatics applications in obtaining new drugs at the structural level 

include studies of the mechanism of drug resistance, detection of drug 

interactions, and prediction of mutant protein structure. In the present study, 

computer-based approaches including molecular dynamics simulation and 

molecular docking as a novel and efficient method for the identification and 

investigation of new cases as well as the investigation of mutated proteins and 

compounds will be examined . 
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INTRODUCTION 

Tuberculosis (TB) is an infectious disease that is a major 

threat to public health (1-3). Responsible for 2 million 

deaths per year (one every 15 seconds) around the world, 

especially true in areas with high poverty, unfavorable 

living conditions, lack of adequate medical and primary 

care (4, 5). Mycobacterium tuberculosis  (MTB)  is the oldest 

known human pathogen affecting more than a quarter of 

the world's population. It is also more common in 

countries with poor resources (6, 7). 

Despite the development of numerous anti-tuberculosis 

drugs (Isoniazid, Rifampicin, Ethambutol, streptomycin, 

pyrazinamide, etc.) and the TB vaccine, the disease has still 

claimed   the  lives  of   many   people   worldwide  because  

 

effective treatments are either too long or expensive. 

According to the World Health Organization (WHO), 

resistance to at least two drugs, isoniazid (INH) and 

rifampin (RIF), causes multidrug-resistant tuberculosis 

(MDR-TB) (6, 8-11). 

Antimicrobial resistance (AMR) is one of the most 

important human health concerns as well as a major 

challenge for global drug discovery programs, which is the 

inefficiency of antibiotic drugs against specific bacteria  (12, 

13). Antimicrobial resistance has been reported in three 

rising levels, multidrug resistance (MDR), extensive drug 

resistance (XDR) and pan-drug resistance (PDR) (12). AMR 

threatens millions of people around the world and has 
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rightly been declared a global threat by the World 

Economic Forum (13, 14). 

The susceptibility of anti-tuberculosis treatments in 

MDR-TB has decreased due to various mutations in the 

target drug-gene. This has worsened despite the 

combination of TB-HIV and appearance of the emergence 

of multidrug-resistant (MDRTB), totally drug-resistant 

(TDR) and extensively drug-resistant (XDR) TB (15-17). 

The methods commonly used to detect drugs are 

laborious, costly, and time-consuming, requiring at least 10 

years and about $ 800 million to produce a new drug. 

These processes are often not successful due to the low hit 

rate, failure to fulfill the required absorption, distribution, 

metabolism, excretion, and toxicity (ADMET). Therefore, a 

better method is needed to produce TB drugs (4). 

Computer-aided drug design through modeling and 

docking an alternative method useful for drug discovery 

and development in this field (18, 19). Also due to the 

availability of the complete MTB genome as well as the 

initial and third structures of the unique proteins required 

for the survival of this organism, this method means 

virtual screening using computational modeling due to 

cost reduction and time required to identify active drug 

cases it can be helpful (20). 

As a result, bioinformatics approaches can be used to 

predict the structure of mutant proteins along with studies 

investigating the mechanism of drug resistance and 

revealing drug-target interactions at the structural level to 

obtain new drugs in the field.  

In the present study, we intend to review computer-

based approaches including molecular dynamics 

simulation and molecular docking to identify and 

investigate new cases for the design of drugs that affect 

mutant proteins and the metabolic pathways involved in 

these pathogens, together with some practical details in 

few examples. 

 

MOLECULAR DYNAMICS (MD) 

It can be stated that one of the most efficient and best 

methods of studying biological macromolecules is the 

Molecular dynamics (MD) simulation method (21-23). MD 

simulations of protein structure can be performed in an 

aqueous medium to provide predicted adaptations of 

proteins under physiological conditions (24-26). 

They are also important for understanding the dynamic 

behavior of proteins based on different times (from fast 

internal movements to slow structural changes or even 

protein folding processes)  (27). In fact, this system shows 

(predictions based on a general physics model governing 

interactions) how each atom in different molecular and 

protein systems moves over time  (22). An important ability 

of this method is to record a wide range of simulations of 

important molecular biomass processes. These include 

ligand binding, deformation, and folding protein, 

representing the positions of all atoms in femtosecond 

resolution (28). On the other hand can examine the 

influence of explicit solvent molecules on protein structure 

and stability to obtain the average properties of the 

biomolecular system including density, conductivity, and 

dipole moment, as well as various thermodynamic 

parameters including interaction energy and entropy (29). 

X-ray crystallography, cryo-EM (cryo-EM), nuclear 

magnetic resonance (NMR), electron paramagnetic 

resonance (EPR), Förster or fluorescence resonance energy 

transfer (FRET) are structural biology techniques often 

used in combination with MD simulations (28). 

The groundbreaking studies have shown a 

fundamental role in classical MD simulations in the study 

of biological systems. They used MD simulations to obtain 

various combinations of proteins and nucleic acids, 

including early attempts to spontaneously simulate 

complex phenomena such as protein folding. 

Late in the 1950s, the first simulation was made of 

simple gases (30). The first simulations of a protein were 

made in the late 1970s  (31), the factors that made these 

simulations possible were the achievements that received 

the Nobel Prize in Chemistry in 2013 (32, 33). The 

enormous increase in computing power permits simulation 
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of systems 104-106 atomic (34, 35) and simulation time 

from micro sec to nano sec, respectively (36). 

However, MD simulations have become increasingly 

popular in recent years by the scientific community, 

especially experimental molecular biologists. With the 

recent advances in crystallography, tens of structures of 

different molecules have been identified (which were 

recognized by the Nobel Prize in 2003, 2012), whereas the 

crystallographic structure of membrane proteins has been 

difficult in the past. Cryo-EM (recognized by a 2017 Nobel 

Prize) was one of the solutions that accelerated the 

identification of such structures (37). 

Over the past decade, due to the rapid development of 

faster architectures and better algorithms for performing 

high-level calculations on time (2 molecular dynamic base), 

we have seen an increase in the effectiveness of 

computational structure-based drug design (SBDD) in 

drug discovery. The introduction of new computer 

hardware, especially graphics processing units (GPUs), 

allowed powerful simulations to be run at an average cost 

locally (38, 39). 

 

HOW MD SIMULATION WORKS 

It can be said that the basic idea of this technique (MD 

simulation) is simple. Depending on the position of all 

atoms in a biomolecular system (Proteins that are 

surrounded by lipid bilayer or water can be an example), 

the force applied to each atom can be calculated by all 

other atoms (28). 

Classical MD can be considered a physical method 

based on Newtonian physics to study the motion of atoms 

and molecules and the interaction between them.  In this 

way, a force field is used to estimate the forces between the 

intersecting atoms and to calculate the total energy of the 

system (40). Then during MD simulation, Newton's laws of 

motion integration, sequential configurations, create a 

transformation system, providing paths that determine the 

positions and velocities of the particles over time (40).    

The general steps in an MD simulation are illustrated in 

Figure 1. 

 

 

 

 

 

Figure 1. General steps in Molecular dynamics simulations that can be imagined. 

 

The result of this path describes the configuration of the 

atomic level of the system at any point in time simulated as 

a 3D film. These simulations can be described as a 

powerful method for the following reasons: First, they 

record the location, mode, and rate of movement of each 

atom at any point in time, which is very difficult with any 

other laboratory method (28). Second, the simulation 

processes are very precise and can be controlled with high 

accuracy, including the primary composition of a protein 

to which the ligases are attached including a variety of 

post-translational and mutant changes, voltage, 

protonation, the temperature in a membrane that are 

present in the environment by other molecules, and so on. 

The impact of a wide range of molecular perturbations can 

be studied and compared by using the results of 

simulations performed under different conditions. The 

forces in the MD simulation are often calculated by 

molecular mechanical field modeling, which usually 

according to the experimental measurements and the 

results of quantum mechanical calculations.  To ensure 

numerical and statistical accuracy of the numbers in an 

MD simulation, the time steps must be short, typically 

these are only a few cases of femtoseconds (10-15 seconds)  

(Figure 2). Most important biochemical processes (such as 

structural and functional changes of proteins) occur at 

nanoseconds, microseconds or longer. In any case, a typical 

simulation involves millions or billions of time steps. 

Alongside this, millions of interatomic interactions that are 

simultaneously evaluated in a single time step make the 

simulation processes highly computational. Recent 

improvements have been remarkable. Over the past few 

decades, longer and cheaper simulations have become 

available with advances in computational hardware, 
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software, and algorithms used for MD. Highly specialized 

hardware (41, 42) led to a significant increase in computing 

speed and made specific simulations possible in 

milliseconds (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Applications of molecular dynamics for protein design. (A) Molecular 

dynamics simulations can be used to design stable protein variants, (B) engineer 

functional regions, or (C) provide insights from protein unfolding/folding 

pathways. 

 

Perhaps most importantly, GPUs allowed simulations 

performed on one or two inexpensive PC chips to perform 

better than they had previously done on supercomputers 

(38). These GPUs have made simulations at significant 

biological intervals much more accessible to researchers 

than ever before. Simulations are now relatively 

straightforward, and computational resources for 

performing useful simulation values are increasingly 

available. Due to the large amounts of data on the different 

paths of atoms, obtaining accurate biological insights and 

interpreting simulation results can be challenging. 

Evaluating the mobility and flexibility of different 

regions of a biomolecule is one of the most fundamental 

applications of these types of simulations. By simply 

simulating such a structure, one can determine how many 

different molecules move in equilibrium and what kinds of 

structural oscillations it undergoes.  Other features of this 

method include simulating some of the functional 

behaviors of protein and ligand binding, which are often 

very important (dynamic behavior of water molecules and 

salt ions) (43-45). 

They are also commonly used to refine as well as 

constructor refine structural models based on empirical 

structural biology data. (Often using MD protocols, the X-

ray crystal structures fit the experimental data, preserving 

the model structure) (46). 

In specific applications such as ligand and protein 

design, these types of simulations are mostly used as a 

relatively inexpensive filter to filter (binding or stability 

energy) large numbers of candidates in a small sample that 

can be tested  (47-49). 

On the other hand, more importantly, it can be pointed 

out that simulations lead to new laboratory work by 

presenting new hypotheses  .The development of new 

drugs is an exciting new area where MD simulations can 

perform different experiments (50, 51). 

They are also valuable in optimizing lead, whereby the 

performance or properties of lead in a ligand is improved 

or modified. These simulations can be used to predict the 

return of a ligand-binding pocket, to identify the key 

interactions of a ligand with the binding pocket site, as 

well as to identify possible ligand potentials (52, 53). 

MD may also be useful for virtual screening, predicting 

where a selected primary ligand binds to the target. Virtual 

screening is usually traditionally performed using a single 

structure of a target protein by docking software (54). 

Simulations may also help design drugs with the 

desired binding and dissociation kinetics of features that 

have recently been identified for efficacy and safety. For 

example, the effectiveness of ligands on specific targets is 

associated with residence time rather than binding affinity. 

In various studies, MD-based methods in ligand ranking 

have been studied according to their dissociation rate (55). 

 

PRACTICAL TIPS ON USING MD 

SIMULATION 

The most common computing hardware used is GPUs, 

which are a good option because of their fast simulation 

and average cost, but simulations are also performed on 

supercomputers using central processing units (cup) that 

can provide more speed. The most common types of forces 

used can include various versions of AMBER, CHARMM, 

and OPLS (56-59). 

A. Modulating Protein Stability 
I. Perform simulations in native and nonnative environments 

II. Inform designs by analyzing the dynamics of unstable residues 
III. Perform simulations of designs to determine the impact of 

mutations on protein stability 

Applications of molecular 

dynamics for protein design 

B. Engineering Functional regions  
I. Perform simulations that capture functional dynamics  

II. Inform designs by analyzing the dynamics of functional residues  
III. Perform simulations of designs to assess the impact of 

mutations on function regions 

C. Insights from Folding Pathways 
I. Simulate the unfolding/folding pathway and partition the 

trajectory into conformational states  
II. Inform designs with insights from specific conformations or 

transitions along the folding pathway  
III. Perform simulations of designs to assess the impact of mutations 

on the folding landscape 
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These forces each have their strengths and weaknesses, 

but they all rely on similar functional forms. For example, 

CHARMM36m and the CHARMM General Force Field 

(CGEFF) complement field have optimized many valid 

parameters for drug-like ligands, lipids, and proteins (58, 

60, 61). 

Also mentioned is the A99SB force field, which has 

been recently introduced for disrupted or disordered 

proteins  (59) and OPLS3 is a force field that optimizes 

ligand parameters at best, although their specific nature 

generally precludes third-party evaluation  (57). Common 

software used includes GROMACS, NAMD, AMBER, 

CHARMM, DESMOND, and OPENMM (62-65).  

AMBER and CHARMM software should not be 

confused with the AMBER and CHARMM force fields. All 

modern software available for simulation supports 

different force fields. The packages mentioned are the same 

in terms of computation but they differ to support features 

and how to use different hardware (e.g., coarse-grained 

simulation support, temperature and pressure control 

schemes, and sampling methods). 

One of the most important sources for MD simulations 

is the scientific research collaboration with structural 

bioinformatics (RCSB, WWW.rcsb.org), which makes 

available 3D macro logical biological structural data (66). 

The RCSB Protein Database (PDB) is a global repository for 

the processing and distribution of three-dimensional 

structure data of macromolecules, such as proteins and 

nucleic acids, and is an essential resource for biomolecular 

modeling (66). 

It should be noted that the three-dimensional structure 

of various drug molecules is available in several large 

databases such as NIH (67), ZINC (68, 69), and Drug Bank 

(69). 

It should be noted that the structures obtained from the 

experiments require some processing to prepare them for 

simulation (Including hydrogen atoms that are not 

generally soluble in crystalline structures) Also add some 

"solvents" such as lipids, water, ions, salt and determine 

the force parameters. Many common simulation software 

has been improved, and available to make system 

preparation easier  (28, 70, 71). One of the challenges facing 

decision-makers in choosing the right type of simulation 

for each project as well as analyzing the results (including 

advanced sampling techniques for use where applicable). 

Analyzing MD simulation results for a variety of reasons 

can be challenging. 

These simulations generate a lot of data.  Typically a 

simulation can track the positions and velocity of 100,000 

atoms over a billion-time step. Identifying the data and 

biological aspects of these data are very important and 

challenging. Several common "pre-packaged" analytics   

are readily available in the software, but most      

simulation projects benefit from writing custom analytics 

programs or scripts dramatically through multiple 

frameworks (56, 72-74). 

Both MD simulation design and interpretation of the 

results have limitations: First, the force fields used in MD 

are inherently approximate, although they have improved 

greatly in recent years (75). Second, covalent bonds do not 

break and form during conventional MD simulations, 

meaning that the residual rotational states of the amino 

acids are titrable constant and must be carefully adjusted at 

the start of a simulation unless the approaches applying 

the pH simulation (76) constant is typically the case with a 

significant increase in computational cost for disulfide 

bands. Third, the availability of an accurate protein 

structure or a good matching model as a prerequisite can 

be considered an influential factor in the accuracy and 

efficiency of the simulation.  Finally, it can be concluded 

that the design of simulation studies is strongly influenced 

by the availability of laboratory structures. As mentioned, 

MD simulations have become relatively simple in recent 

years, but MD simulations are still used indirectly to 

achieve high-impact conclusions. To perform quality and 

reliable work by MD, it is important to identify the 

research process by MD with appropriate empirical and 

computational studies and carefully tailor these 

simulations for them. 
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MOLECULAR DOCKING 

Molecular docking is an essential part of the computer-

aided drug design tool (77).  It first appeared in the 1980s 

and early 1990s to predict the binding state of active 

compounds and the screening of large digital library 

complexes. This method was used to reduce costs and 

speed up the process of drug discovery, which is part of 

the "structure-based drug design" approach (78, 79). 

Since the early 1980s, molecular docking has been the 

most common method of structure-based drug design  (80). 

Programs based on various algorithms have been 

developed for molecular docking studies that have made 

docking increasingly important in pharmaceutical 

research. 

Molecular docking is a method of analyzing the 

composition and orientation of molecules into the binding 

site of a macromolecular target. The search algorithm 

generates potential poses, which are ranked by scoring 

functions (81). There have been many good reviews of 

docking in the past (82-85), and many studies have        

been done to compare the relative performance of 

programs (86-89). 

In this method (molecular docking), the behavior of 

small molecules at the junction of the target protein can be 

investigated and also used in interaction modeling 

between a small molecule and a protein at the atomic   

level  and also identify the underlying biochemical 

processes (90, 91). 

Over the past few decades several software 

applications have been developed, some of which are very 

popular, such as Autodock (92), Autoduckvina (93), 

DockThor (94, 95), GOLD (96, 97), Flexx (98) and Molegro 

Virtual Docker (99).  

The docking process involves two basic steps: The 

composition of the ligand, its orientation, as well as its 

position is predicted in different sites (usually referred to 

as pose) (100, 101). 

In most cases, the structures of macromolecules can be 

obtained from the Protein Data Bank (PDB) (102), which 

provides our access to the three-dimensional atomic 

coordinates obtained by experimental methods. It is also 

possible that the experimental 3d structure of the target is 

not available, but is not common. To overcome this 

problem, computational forecasting methods such as 

comparative and ab initio modeling can be used to obtain 

the three-dimensional structure of proteins (81). 

Knowing the binding site before docking processes 

significantly increases docking efficiency (100). In many 

cases, the binding site is identified before ligand binding 

(100). One can also obtain site-related information by 

comparing the target protein with a family of proteins that 

function similarly or with crystallized proteins with other 

ligands  (100). 

If you do not know the connectivity sites, cavity 

detection programs or online servers for example: pass 

(103), SURFnet (104, 105), Pocket (106), GRID (107, 108) and 

MMC (109) can be used to identify putative active sites in 

proteins. Blind docking is a form of docking that is 

performed without any assumption about the junction  

(100). The site of the junction is usually specified to focus 

on docking calculations. However, when area information 

is missing, there are two common approaches: either the 

most probable algorithmically predicted sites or "docking 

blind" simulations (110). 

Several existing software can be used to identify 

binding sites.  For example, moldock (99) uses an integrated 

cavity detection algorithm to identify potential binding 

sites. DoGsiteScore is an algorithm that determines 

possible pockets and their druggability scores, which 

describes the potential of a binding site to interact with a 

small Drug-like molecule (111). 

During docking calculations, one strategy is to use a 

network that includes predefined potential energies for 

interaction at the target junction  (83). This method speeds 

up the execution of docking and essentially involves 

discretization of the junction (112). 

Ligand structure is also required and small molecule 

databases such as ZINC (69) and PubChem (67) can be 

used. However, better evaluation of rotations, free tarsions, 
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protonation states, and charge assignments is crucial for 

successful docking. 

Two things are important in system docking: Ranking 

scoring functions and search algorithms. The analysis of 

the search algorithm and generates ligand pose at the 

junction is a goal, With regard to roto-translational and 

internal degrees of freedom of the ligand (101). 

Search strategies are often classified as systematic, 

random, or definitive (83). 

The systematic search algorithm gradually evaluates 

the release rate of each ligand (83, 113). 

For example, component-based methods with 

systematic algorithms used in Flexx and eHits (114) can be 

noted. Various algorithms have also been developed to use 

pharmacophore information related to proteins and 

ligands.  These algorithms attempt to coordinate the 

distance between the pharmacophoric points of the ligand 

and the protein from the pharmacopoeial match (115). 

For example, FIEXX-PHARM software is an extensive 

version of FLEXX and uses pharmaceutical features as a 

limitation in docking calculation (111). 

Random search algorithms make changes in the degree 

of ligand release. 

Some software, such as AutoDuck, GOLD, DockThor, 

and MolDock, use random algorithms for search methods 

(79). 

Although the challenges and limitations of the docking 

method have been identified in the last two decades (87), 

this research topic is still very active. 

 

COMBINED DOCKING AND MD 

SIMULATION 

For more reliable results of protein-ligand complexes, a 

combination of cheap and fast docking methods with 

accurate but expensive MD techniques can be used. The 

strength of this compound lies in its complementary 

strengths and weaknesses. 

On the one hand, docking techniques are used to 

discover the vast conformational space of ligands over a 

short period and allow for the careful examination of large 

libraries of compounds such as drugs at a reasonable cost. 

The major disadvantages are the lack or poor flexibility of 

the protein that does not allow for the regulation of its 

composition on ligand binding and the absence of a unique 

and widely applicable function necessary to establish a 

valid ranking of the final complexes.  On the other hand, 

MD simulations can flexibly treat both ligands and 

proteins, allowing for the suitability of the receptor-

binding site around the newly introduced ligand. 

Therefore, a combination of the two protocols in which 

docking is used for rapid screening of large libraries and 

MD simulations are used to detect protein receptor 

structures, optimize the structure of end complexes, and 

calculate precision energy, an approach It is reasonable to 

improve the drug design process. 

 

CASE STUDY 

Here we are going to show you how to do structural 

analysis by reviewing some studies in this field. Isa et al., 

2018 conducted a study to investigate the 3-

dehydroquinate synthase (DHQS) pathway using in Silico 

docking and molecular dynamic simulation.  This pathway 

is important because it is present in bacteria, algae, fungi, 

and plants but does not occur in mammals.  The shikimate 

pathway is an important and integral pathway for the 

metabolism of MTB (naphthoquinones, menaquinones, 

and mycobactin biosynthesis). In this study, novel 

inhibitors of 3-dehydroquinate synthase (DHQS) were 

identified, an enzyme that catalyzes the second stage of the 

sheik pathway in MTB. A total of 18 compounds with the 

best binding energies were selected from 12,168 

compounds from two public databases through virtual 

screening and molecular docking analysis using PyRx 8.0 

and Autoduck 4.2. These 18 compounds were analyzed 

and screened for absorption, distribution, metabolism, 

excretion, and toxicity (ADMET) and found 9 compounds 

that satisfied all ADMET criteria. Among the various 

compounds, three compounds with the best binding 

energy were selected to molecular dynamics simulation. 

Finally, the two compounds ZINC633887 and 
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PubChem73393 formed stable complexes with DHQS and 

the structure of the two ligands remained largely 

unchanged during the simulations at the ligand-binding 

site. The two compounds identified by these methods 

(docking and MD simulation) are potential candidates for 

the treatment of tuberculosis that must be approved in -

vivo and in-vitro (4). 

In another study, Kumar et al., in 2017 investigated 

computer simulations of susceptible L, D Transpeptidase 

by Carbapenems and Cephalosporins in Mycobacterium 

abscessus. The importance of L, D Transpeptidase is 

because most of the linkages in the cell wall peptidoglycan 

of M. abscessus are synthesized by non-classical 

transpeptidases. In this study, the interaction of β-lactams 

with two L, D transpeptidases in M. abscessus, LdtMab1 

and LdtMab2 was investigated and found that both 

Carbapenems and Cephalosporins, not Penicillins, 

inhibited these enzymes (116). 

Halder et al. (2019) used in Silico absorption and 

multiple docking analysis to investigate the ADMET of 

anti-leprosy and Dapsone compounds against the 

synthesis of Dihydropteroate synthase from mycobacterium 

leprea (117). Because Dapsone is an expensive antibacterial 

drug that has many side effects, a natural and cheaper 

alternative is needed. The three-dimensional protein 

structure of the dihydropteroata synthase was modeled 

from M. leprae. All analytical docking analyzes were 

performed using AutoDock Vina, AutoDock 4.2.6, and 

SwissDock. The result showed that neobavaisoflavone 

tends to bind better than Dapsone and forms a stable 

protein-ligand complex (117). 

Another use of the molecular docking system by Tuhin 

Ali et al. (2018) on the anti-TB potential of propolis 

selective elements can be mentioned (118). propolis, a 

substance naturally produced by bees after collecting 

herbal resins, is used in folk medicine for its beneficial anti-

tuberculosis activities. In this study, investigated the 

interaction between selected propolis compounds and four 

"druggable" proteins that are critical for the function of TB 

physiology, namely MtPank, MtDprE1, MtPknB and 

MtKasA using molecular docking (118). As a result, both 

the combination of MtDprE1 and MtKasA showed 

superior docking scores than control inhibitors and 

provided interesting potential scaffolds for in vitro 

biological evaluation and anti-TB drug design (118). 

 

CONCLUSION 

As mentioned earlier, with the development of anti-TB 

drugs (Isoniazid, Rifampicin, Ethambutol, Pyrazinamide, 

Streptomycin, etc.) and the TB vaccine, the disease 

continues to threaten the lives of many people around the 

world. Drug resistance in this type of disease is increasing 

day by day. Appropriate, fast, and efficient methods are 

needed to identify and design new drugs without drug 

resistance . Bioinformatics approaches can be used to 

predict the structure of mutant proteins, along with studies 

of the mechanism of drug resistance and the identification 

of drug-mediated interactions with a structural target, to 

obtain novel drugs in the field. These approaches include 

molecular docking techniques and molecular dynamics 

simulations. The rigorous use of MD simulations in 

conjunction with complementary empirical methods now 

shows an area of great opportunity in the various sciences. 

Effective use of simulations in molecular biology and drug 

discovery requires careful thinking about existing 

experimental and computational data, and thus benefits 

from both extensive expertise and interdisciplinary 

collaboration. It is also important to note that each of these 

techniques has its drawbacks and weaknesses but new 

approaches that use a combination of the two will improve 

prediction performance and allow for better utilization of 

information in the future. It is hoped that using these new 

approaches will be able to design and manufacture 

effective drugs without resistance. 
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