Epigenetics and Chromatin Remodeling Play a Role in Lung Disease

Document Type : Review Article

Authors

1 Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands

2 Chronic Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran

3 Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK

Abstract

Epigenetics is defined as heritable changes that affect gene expression without altering the DNA sequence. Epigenetic regulation of gene expression is facilitated through different mechanisms such as DNA methylation, histone modifications and RNA-associated silencing by small non-coding RNAs. All these mechanisms are crucial for normal development, differentiation and tissue-specific gene expression. These three systems interact and stabilize one another and can initiate and sustain epigenetic silencing, thus determining heritable changes in gene expression. Histone acetylation regulates diverse cellular functions including inflammatory gene expression, DNA repair and cell proliferation. Transcriptional coactivators possess intrinsic histone acetyltransferase activity and this activity drives inflammatory gene expression. Eleven classical histone deacetylases (HDACs) act to regulate the expression of distinct subsets of inflammatory/immune genes. Thus, loss of HDAC activity or the presence of HDAC inhibitors can further enhance inflammatory gene expression by producing a gene-specific change in HAT activity. For example, HDAC2 expression and activity are reduced in lung macrophages, biopsy specimens, and blood cells from patients with severe asthma and smoking asthmatics, as well as in patients with chronic obstructive pulmonary disease (COPD). This may account, at least in part, for the enhanced inflammation and reduced steroid responsiveness seen in these patients. Other proteins, particularly transcription factors, are also acetylated and are targets for deacetylation by HDACs and sirtuins, a related family of 7 predominantly protein deacetylases. Thus the acetylation/deacetylation status of NF-κB and the glucocorticoid receptor can also affect the overall expression pattern of inflammatory genes and regulate the inflammatory response. Understanding and targeting specific enzymes involved in this process might lead to new therapeutic agents, particularly in situations in which current antiinflammatory therapies are suboptimal.

Keywords